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1 Chernoff/Hoeffding Bounds

Consider n independent Boolean random variables X1, ..., Xn, where Xi takes value 1 with
probability pi and 0 otherwise. Let X = ∑n

i=1 Xi. We set µ = E [X] = ∑n
i=1 E [Xi] = ∑n

i=1 pi.

We will now derive a bound on the probability P [X ≥ t] for t = (1 + δ)µ that is much
stronger than what we were able to achieve from Chebyshev’s inequaity by using the full
power of mutual independence (rather than just pairwise independence).

Here is some intuition for the argument we will give. Define Yi to be eλXi for some small
λ > 0. So when Xi = 1 we have that Yi ≈ 1 + λ and when Xi = 0 we have Yi = 1, and
E[Yi] ≈ 1 + piλ ≈ epiλ. Consider now the product Y of the Yi’s. Since the Yi are mutually
independent, we have E[Y] = ∏i E[Yi] ≈ eλ ∑i pi = eλE[X]. We can now apply Markov’s
inequality to say that there is at most a 1/k chance that Y ≥ kE[Y]. But notice that since
X = 1

λ ln(Y), this means that X is larger than 1
λ ln(E[Y]) by at most an additive ln k

λ . So,
even if k is very large (so the probability of the event is very small), X is only larger than
1
λ ln(E[Y]) by a small amount. Also, for small λ we have 1

λ ln(E[Y]) ≈ E[X]. We are
cheating here though: these approximations are not exact and become worse (and the true
quantities go in the wrong direction) as λ gets large, so when we do this for real we will
need to be careful. But this is the intuition. Let’s now do the actual argument.

Using the fact that the function ex is strictly increasing, we get that for λ > 0

P [X ≥ (1 + δ)µ] = P
[
eλX ≥ eλ(1+δ)µ

] (Markov)
≤

E
[
eλX]

eλ(1+δ)µ
.

We now have:

E
[
eλX
]

= E
[
eλ(X1+...+Xn)

]
= E

[
n

∏
i=1

eλXi

]
(independence)

=
n

∏
i=1

E
[
eλXi

]
=

n

∏
i=1

[
pieλ + (1− pi)

]
=

n

∏
i=1

[
1 + pi(eλ − 1)

]
.
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At this point, we utilize the simple but very useful inequality:

∀x ∈ R, 1 + x ≤ ex.

Since all the quantities in the previous calculation are non-negative, we can plug the above
inequality in the previous calculation and we get:

E
[
eλX
]
≤

n

∏
i=1

e(pi(eλ−1))

= e∑i pi(eλ−1)

= e(e
λ−1)µ

Thus, we get

P [X ≥ (1 + δ)µ] ≤ exp
(
(eλ − 1)µ− λ(1 + δ)µ

)
.

We now want to minimize the right hand-side of the above inequality, with respect to λ.
Setting the derivative of the exponent to zero, we get

eλµ− (1 + δ)µ = 0 ⇒ λ = ln(1 + δ) .

Using this value for λ, we get

P [X ≥ (1 + δ)µ] ≤
exp

(
(eλ − 1)µ

)
exp

(
λ(1 + δ)µ

) =
eδµ

(1 + δ)(1+δ)µ
=

(
eδ

(1 + δ)1+δ

)µ

.

Exercise 1.1 Prove similarly that

P [X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)1−δ

)µ

.

(Note that P [X ≤ (1− δ)µ] = P
[
e−λX ≥ e−λ(1−δ)µ

]
.) When δ ∈ (0, 1), the above expres-

sions can be simplified further. It is easy to check that(
eδ

(1 + δ)1+δ

)µ

≤ e−δ2µ/3, 0 < δ < 1,

and (
e−δ

(1− δ)1−δ

)µ

≤ e−δ2µ/2, 0 < δ < 1.

So we get:
P [X ≥ (1 + δ)µ] ≤ e−δ2µ/3, for 0 < δ < 1.

and
P [X ≤ (1− δ)µ] ≤ e−δ2µ/2, for 0 < δ < 1.
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1.1 Coin tosses once more

We will now compare the above bound with what we can get from Chebyshev’s inequality.
Let’s assume that X1, ..., Xn are independent coin tosses, with P [Xi = 1] = 1

2 . We want to
get a bound on the value of X = ∑n

i=1 Xi. Using Chebyshev’s inequality, we have

P [|X− µ| ≥ δµ] ≤ Var [X]

δ2µ2 .

And since in this particular case we have that Var [X] = n/4 and µ = n/2, we have

P [|X− µ| ≥ δµ] ≤ 1
δ2n

.

The above bound is only inversely polynomial in n, while the Chernoff-Hoeffding bound
gives

P [|X− µ| ≥ δµ] ≤ 2 · exp (−δ2n/6) ,

which is exponentially small in n. This fact will prove very useful when taking a union
bound over a large collection of events, each of which may be bounded using a Chernoff-
Hoeffding bound. For example, consider the case where for m sets S1, . . . , Sm ⊆ [n], we
define

ZSi = ∑
j∈Si

Xj .

While the variables ZS1 , . . . , ZSm are not necessarily independent, each of these is a sum of
Xj variables, which are independent. Thus, we can say that for any Si,

P

[∣∣∣∣ZSi −
|Si|
2

∣∣∣∣ ≥ t
]
≤ 2 · exp

(
−2t2/(3 |Si|)

)
≤ 2 · exp

(
−2t2/(3n)

)
,

where we choose δ = 2t/ |Si| so that δ |Si| /2 = t. Thus, by a union bound over all i ∈ [m],
we get that

P

[
∃i ∈ [m].

∣∣∣∣ZSi −
|Si|
2

∣∣∣∣ ≥ t
]
≤ 2m · exp

(
−2t2/(3n)

)
.

Thus, when t =
√

3n · ln m, the probability of the above event is at most 2/m. Check that
just using Chebyshev’s inequality does not allow for such a strong bound on the probabil-
ity of the above event.

Note that the above calculation used the following union bound

Exercise 1.2 Let E1, . . . , Ek be events on the same outcome space Ω. Then

P [E1 ∪ · · · ∪ Ek] ≤
k

∑
i=1

P [Ei] .
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2 Random Vectors

Here is another interesting fact we can get using Chernoff/Hoeffding bounds. Suppose
we pick m random vectors v1, . . . , vm in {−1, 1}n. Each of these vectors vi will have the
property that 〈vi, vi〉 = n. But, it turns out that with high probability, for all i 6= j we will
have |

〈
vi, vj

〉
| ≤ c

√
n log m for some constant c > 0. So, even though we can have at

most n orthogonal vectors in an n-dimensional space, we can have a much larger number
of nearly-orthogonal vectors.

This fact comes immediately from Chernoff/Hoeffding bounds and the union bound. Fix
some pair i 6= j, and for each k ∈ {1, 2, . . . , n} define indicator random variable Xk for
the event that the kth coordinates of vi and vj are equal. Notice that X1, . . . , Xn are in-
dependent with P [Xk = 1] = 1/2. Let X = ∑k Xk. By Chernoff/Hoeffding bounds,
P [|X− n/2| ≥ δn/2] ≤ 2e−δ2n/6. Notice that |

〈
vi, vj

〉
| = 2|X − n/2|. So, using δ =

6
√

ln m
n we have P

[
|
〈
vi, vj

〉
| ≥ 6

√
n ln m

]
≤ 2e−6 ln m = 2/m6. So, by the union bound

over all O(m2) pairs i, j we have that with high probability |
〈
vi, vj

〉
| = O(

√
n log m) for

all i 6= j.

3 Balls and Bins revisited

We saw earlier that if we toss balls uniformly at random into n bins, then the expected
number of balls we need to use until each bin has at least one ball in it is Θ(n log n). Let’s
now consider some other statistics.

First, if we toss n balls into n bins, what is the expected fraction of empty bins? This is
an easy direct calculation. Let Xi be the indicator random variable for the event that bin
i remains empty. We have E[Xi] = P [no balls fall in bin i] = (1− 1/n)n ≈ 1/e. So, the
expected fraction of empty bins is ≈ 1/e.

Next, if we toss n balls into n bins, how loaded will the most-loaded bin be? We can use
Chernoff/Hoeffding bounds to argue that with high probability, no bin will have more
than t = 3 ln n

ln ln n balls in it.

Specifically, define Zi = number of balls in bin i. We can write

Zi = ∑
j

Xij, where Xij =

{
1 if ball j is thrown in bin i
0 otherwise

.

Then, we have that each Zi is a sum of n independent random variables with E [Zi] = 1.
By Chernoff/Hoeffding bounds, we have that for each i,

P [Zi ≥ t] ≤ et−1

tt ≤
( e

t

)t
.
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To bound the maximum load in across all bins, we use a union bound to say that

P [∃i ∈ [n]. Zi ≥ t] ≤
n

∑
i=1

P [Zi ≥ t] ≤ n ·
( e

t

)t
,

which is at most 1
n for the above value of t. Hence, with probability at least 1 − 1

n , the
maximum number of balls in a bin is at most 3 ln n

ln ln n .
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